

Pyrogen testing and good MAT practices

- 1. Pyrogens
- 2. Detection of Pyrogens
- 3. MAT and Good practices

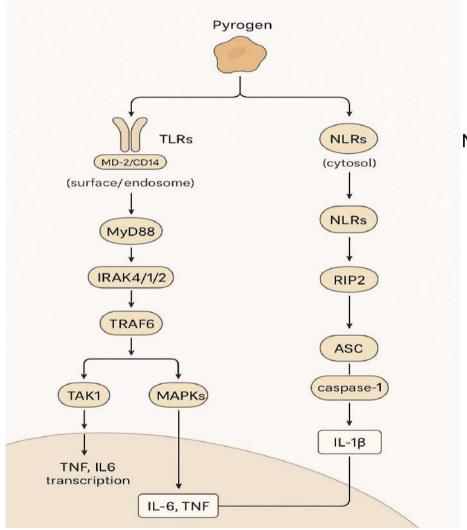
Pyrogens

Pyrogens are substances that trigger the body's **innate immune system**. Pyrogens can cause:

- Fever
- Chills
- Hypotension
- Septic shock—like symptoms
- •Multi-organ failure (in severe cases)

Pyrogens

Drug products - especially injectables—bypass natural barriers,

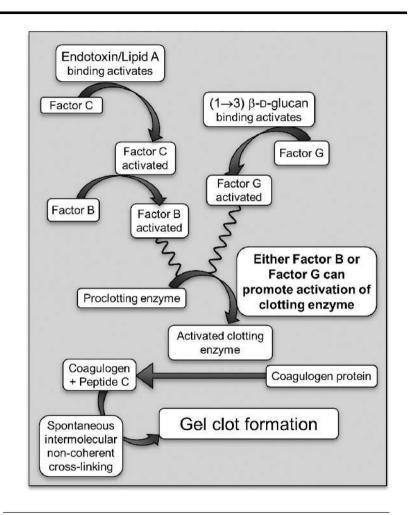

any contaminating pyrogen is delivered directly into the bloodstream or tissues,

making reactions potentially life-threatening.

Pyrogens

- Two types:
- **Endotoxin pyrogens**: Lipopolysaccharides (LPS from Gramnegative bacteria)
- Non-endotoxin pyrogens (NEP): lipoteichoic acid, flagellin, peptidoglycan, lipopeptides, viral RNA, residual cell debris, impurities from biologics, liposomes, nanoparticles

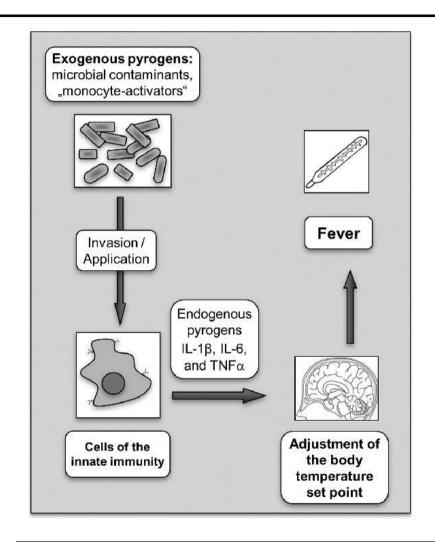
Pyrogen signaling in Monocytes


Toll-like receptors

NOD-like receptors

Pyrogen detection assays: LAL

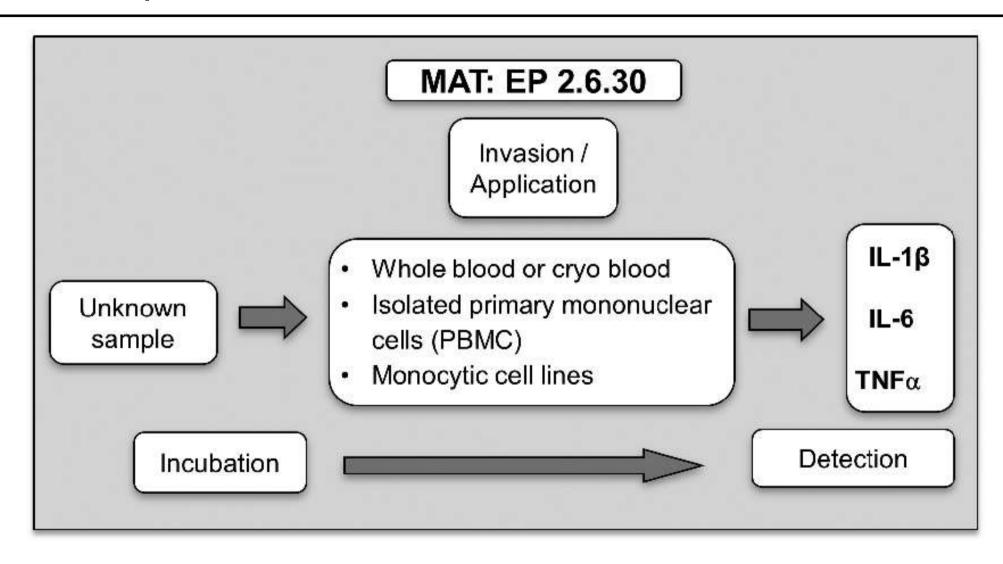
Limulus Amoebocyte Lysate (LAL) assay


- •Detects **lipid A component of LPS** from Gram-negative bacteria
- Mechanism: activation of Factor C in horseshoe crab lysate
- → cascade → gel/clot or color change
- •Purely **endotoxin-specific**, does *not* detect:
 - Gram-positive pyrogens
 - Viral pyrogens
 - Host cell impurities
 - Process contaminants (e.g., leachables)

Pyrogen detection assays: RPT

Rabbit Pyrogen Test (RPT)

- Detects substances that cause fever in rabbits
- Very broad sensitivity to pyrogens
- But physiologically not directly reflective of human responses
- Large ethical, logistical, and variability problems



Pyrogen detection assays: MAT

Monocyte Activation Test (MAT)

- •Detects pyrogens that activate human innate immune receptors (TLR2, TLR4, NLRs etc.)
- •Measures **human cytokine release** → more physiologically relevant
- •Detects both:
 - Endotoxin (LPS)
 - •Non-endotoxin pyrogens (NEP): lipoteichoic acid, flagellin, peptidoglycan,
 - •lipopeptides, viral RNA, residual cell debris, impurities from biologics,
 - •liposomes, nanoparticles

MAT procedure

Pyrogen detection assays: schematic summary

PYROGEN DETECTION METHODS: Detects pyrogens and material-related pirogenicity **RPT** MAT Rabbit Pyrogen Test Direct or indirect contact Global effort to replace (eluate) with the devices animal use in research Use of devices for dynamic LAL exposure increases sensitivity **Limulus Amebocyte Lysate Monocyte Activation Test** Limited applicability, does not detect non-endotoxin pyrogens Must be validated for each type of material

Good MAT practices

The MAT is a compendial, human-cell—based pyrogen test in the European Pharmacopoeia (Ph. Eur. 2.6.30) and is recommended as a replacement for the rabbit pyrogen test after product-specific verification.

Good MAT practices: Pre-analytical & assay setup

Choose an appropriate cell system

Use human peripheral blood mononuclear cells (PBMC), whole blood, or validated monocytic cell lines (e.g., THP-1) depending on intended use and sensitivity requirements. Justify choice in method SOP/validation.

Donor selection / pooling

Screen healthy donors for baseline variability. Donors should be free of any bacterial and viral infections at least 1 week before blood donation. Donors should not be on medications (NSAID/SAID) or medications that influence cytokine levels.

Pooling donors is commonly used to reduce inter-donor variability, but pooling strategy must be justified and validated (pool size, lot-to-lot consistency).

Document donor consent and biosafety approvals.

Good MAT practices: Pre-analytical & assay setup

• When cell lines are used, they need to be mycoplasma free, robustly proliferating, should be of relatively low passage and should respond to endotoxin-stimulii consistently

Validation of pooled cells

Freshly pooled cells or pooled cells cryopreserved and thawed should be validated both with endotoxin standards and NEPs.

Use endotoxin-free materials & aseptic technique

All plastics, reagents, and buffers must be certified endotoxin-free handled under clean conditions to avoid false positives.

Appropriate controls every run

Negative control, positive control (standard LPS or a validated reference), and a sample-spiked control (to assess interference / recovery). Include blanks and assay QC samples.

Select the read-out and time points

IL-6 is a commonly used primary readout. Optimize incubation time (typical MAT plate incubation ~20–24 h) and ELISA timing in development/robustness experiments.

Good MAT practices: Validation / method performance

Define and demonstrate the validation parameters

Sensitivity / limit of detection (LOD), linearity, accuracy / recovery (spike-recovery), precision (intra- and inter-assay), specificity (distinguish endotoxin vs non-endotoxin pyrogens), robustness (critical times/temps/volumes), and stability of reagents and samples.

Assess matrix effects and interference

Test product formulations, excipients, and buffers for inhibition or enhancement (spike/parallelism experiments). If inhibition occurs, adapt sample preparation (dilution, buffer exchange) and revalidate.

Good MAT practices: Practical run-day recommendations

Run plate layout thoughtfully

Randomize donors/conditions across plates to avoid plate position bias; include replicate wells. Use plate maps in batch records.

Optimize ELISA conditions

Validate antibody incubations, substrate times and stop times. Small timing shifts can affect OD readings — include these in robustness testing (e.g., ±10% windows).

Recordkeeping & traceability

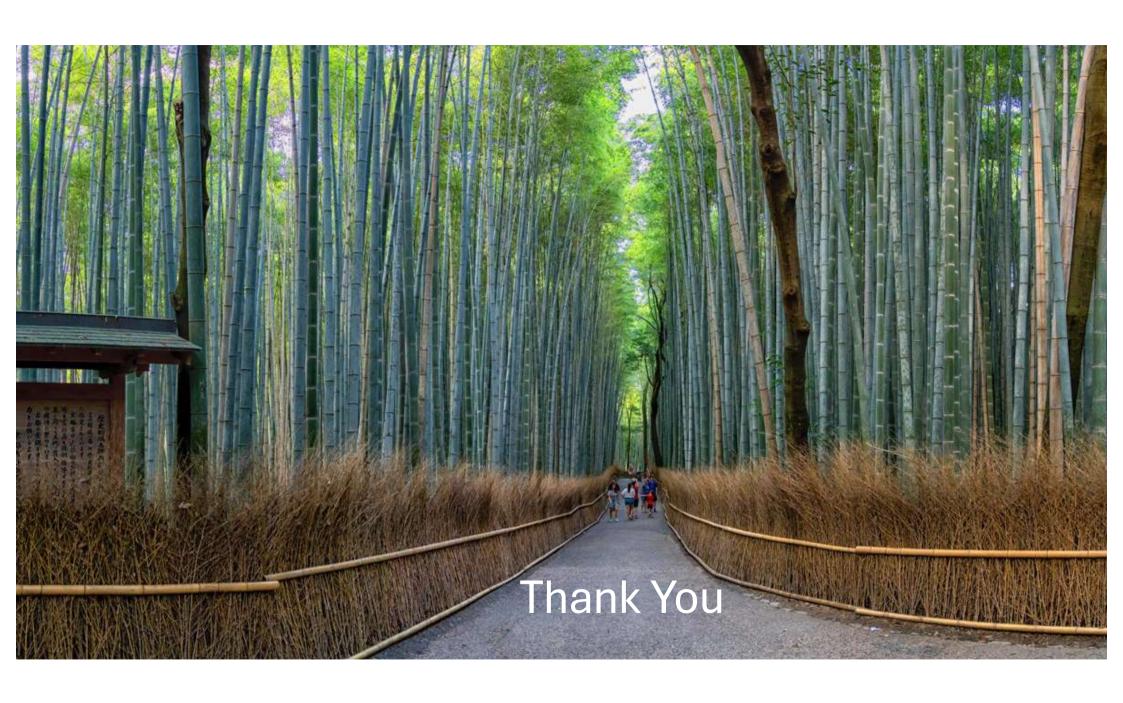
Full SOPs, reagent batch numbers, donor lot information, raw data, curve fits, and deviation records are mandatory for GMP use.

Reagent and reference standards

Use traceable LPS/reference materials and document storage/expiry. Verify the performance of new reagent lots before use in release testing.

Good MAT practices: Regulatory / quality considerations

Product-specific validation for compendial compliance


Even when MAT is compendial (Ph. Eur.), perform product-specific verification/validation to demonstrate suitability for your product and intended acceptance criteria.

GMP lab implementation

For release testing, run MAT under GMP with validated instrumentation, trained analysts, defined QC release criteria, and periodic requalification.

Keep up with guidance

Follow Ph. Eur. chapter 2.6.30 updates, applicable USP/WHO guidance, and national regulator guidance (FDA Q&A on pyrogens, when applicable). Regulatory positions evolve — note recent reviews and papers summarizing best practices.

